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ABSTRACT

We apply polynomial interpolation methods both to the approximation of
functions and to the numerical solutions of hyperbolic and elliptic partial
differential equationmns. We construct the derivative matrix for a general
sequence of the collocation points. The approximate derivative is then found
by a matrix times vector multiply. We explore the effects of several factors
on the performance of these methods including the effect of different
collocation points. We also study the resolution of the schemes for both
smooth functions and functions with steep gradients or discontinuities in some
derivative. We investigate the accuracy when the gradients occur both near
the center of the region and in the vicinity of the boundary. The importance
of the aliasing limit on the resolution of the approximation is investigated
in detail. We also examine the effect of boundary treatment on the stability

and accuracy of the scheme.
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1. INTRODUCTION

In this study we consider the accuracy of the pseudospectral
approximation both for a function and also for the numerical solution of
differential equations. We shall only consider collocation methods, but most
of the results shown also apply to Galerkin methods. We approximate the
function, f(x), by a polynomial, py(x), that interpolates f(x) at N + 1
distinct points  Xg,s..,Xye £7(x) 1is approximated by Py (x) which is
calculated analytically. In solving differential equations we use an approach
similar to finite differences. Thus, all derivatives that appear are replaced
by their pseudospectral approximation. The resultant system is solved in
space or advanced in time for time dependent equatioms. Hence, for an
explicit scheme, nonlinearities do not create any special difficulties.

This approach is equivalent to expanding £f(x) in a finite series of
polynomials related to X5,...,Xy. For a Galerkin method, the coefficients of
this series are obtained from the infinite expansion. For a collocation
method, the coefficients are obtained by demanding that the approximation
interpolate the function at the collocation points. This requires O(N2)
operations. For special sequencies of collocation points, e.g.,. Chebyshev
methods, this can be accomplished by using FFT”s and only requires O(NlogN)
operations. Every collocation method has two interpretations: one in terms
of the collocation points and one in terms of a series expansion. In the
past, this has lead to some confusion., As an example we consider the case of
a Chebyshev collocation method with xj = cos(mj/N). From an approximation
viewpoint, we know [11, 15 -~ 18] that the maximum error for interpolation at
the zeroes of Ty(x) is within (4 + Z/nlogN) of the minimax error and

converges for all functions in cl. The bound for the error based on the



points Xy, given above, is even smaller than this [13]. There also exist
sharp estimates in Sobolev spaces [3]. Since the minimax approximation has an
error which is equi-oscillatory we expect the Chebyshev interpolant to be

nearly equioscillatory. Indeed, Remez suggests using these =x. as a first

J
guess in finding the zeros of £ - Py in his algorithm for finding the
minimax approximation. Thus, we would expect that when used to solve

differential equations that the error would be essentially uniform throughout
the domain,

On the other hand, viewed as a finite difference type scheme, one expects
the scheme to be more accurate near the boundaries where the collocation

points are clustered. At the center of the domain the distance between points

is approximately /2N while near the boundary the smallest distance
between two points 1s approximately n2/2N2. Hence, the spacing at the
center is about /2 times coarser than an equivalent equall& spaced

mesh, Near the boundary the Chebyshev points are about 4N/1r2 times finer
than an equally spaced mesh. From this point of view, we expect the accuracy
and resolving power of the scheme to be better near the boundaries. However,
the bunching of points near the boundaries only serves to counter the tendency
of polynomials to oscillate with large amplitude near the boundary. We shall
also consider collocation based on uniformly spaced points, Since, we
consider polynomial interpolation on the interval [-1,1] we get qualitatively
different results than obtained by Fourier or finite difference methods even
for the same collocation points. In fact, we shall see that the boundaries
exert a strong influence for this case similar to the interpolation based on
Chebyshev nodes.

Connected with this, we shall examine the influence of boundary

conditions on the accuracy and stability of pseudospectral methods. In




general, global methods are more sensitive to the boundary treatment than
local methods. We also consider the effect of the location of the collocation
points on both the accuracy and stability of the scheme and its effect on the

allowable time step for an explicit time integration algorithm.

2. APPROXIMATION AND DIFFERENTIATION
We assume that we are given N + 1 distinct points X < X1 < vae £ Xy
Given a function f(x) it is well known how to approximate f(x) by a

polynomial  Py(x) such that PN(xj) = f(xj), j = 0,e0.,N. We define a

function ey(x) which is a polynomial of degree N and ek(xj) = ij.
Explicitly,
1 N
e (x) =— 1T (x~-x,) (2.1)
k ak 2=0 L
L2k
N
a = l'[ (x - X ). (2.lb)
k 220 k [}
L#k

Then the approximating polynomial is given by,

N
Pe(x) = ] £(x)e (x). (2.2)
k=0
We next consider an approximation to the derivative of f(x). We
construct this approximation by analytically differentiating (2.2). The value

of the approximate derivative at the collocation points is a linear functional

of the value of the function itself at the collocation points. Hence, given
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the N + 1 values f(xj) we can find the values PN (x) by a matrix

multiplying the original vector (£(x3),...,f(xy)). We denote this matrix

jk). By construction, DP = P is exact for all polynomials of

by D= (d N

degree N or less. In fact, an alternative way of characterizing D 1is by
demanding that it give the analytic derivative for all such polynomials at
the N + 1 collocation points. In particular, we shall explicitly

construct D by demanding that,

Dek(xj) = ek(xj), j,k = 0,...,N, (2.3)
i.e.,
ek(xo)
0
D 1 - k-th row = .
0 .
0 ek(xN)

Performing the matrix multiply, it is obvious that

dek
We next explicitly evaluate djk in terms of the collocation points

Xy Taking the logarithm of (2.1) we have




N
log(ek) = ) log(x - xl) - log(a,).
2=0
L=k
Differentiating, we have
- N
e, (x) = e, (x) Yy /(x - ;). (2.5)
2=0
2=k

In order to evaluate (2.5) at x = X5 j # k, we need to eliminate the zero

divided by zero expression. We therefore, rewrite (2.5) as

- N
ek(x) = ek(x)/(x - xj) + ek(x) QZO 1/(x - xl).

2#j,k

Since, ek(xj) =0 for j = k we have that

e;(xj) = ln e (0/(x - x).
X"‘Xj

Using the definition of ey(x), (2.1), we have

N a.
1 J
d. = — I (X, - X ) = -—T——_———j' ’ (See (2.lb)) (2.7)
jk 3 220 j k ay xj X,
27,k

While the above formulas (2.5), (2.7) are computationally useable, it is
sometimes preferable to express the formulas slightly differently. We,

therefore, rederive these formulas using a slightly different notation,

Define,

W A=

¢N+1(X) = (x - xg). (2.8)

2=0



Then,
¢y () = I (x-x,) (2.9)
N+l k=0 2=0 L
L7k
and so
¢N+1 (Xj) = aj. (2.10)
It can also be verified that
P N
¢N+1 (X.) = Za. z x—-.lT—)?— L] (2011)
3 k=0 %3 7 *x
k#j
Hence, ( -
34 _ ¢N+1(Xj) PR
A (X, = X)) = > =
alxy = x RICRICIEE )
djk = (2.12a)
N 1 o1 (%)
z raen i e e j=k (2.12b)
2=0 "k 3 N+1'7k
2=k

Given aj it requires another N2 operations to find the off diagonal
elements by (2.12a). It requires s operations to find all the diagonal
elements from (2.12b). Hence, it requires about 4N2 operations to construct
the matrix D, We multiply the matrix D on the left by
diag(l/al,...,l/aN) and on the right by the matrix diag(al,...,aN).
Then D 1is similar to a matrix D; where D; 1s a sum of an antisymmetric

matrix and a diagonal matrix. Since is a polynomial of degree N - 1 -

SN+l




¢§;1 cannot be zero at all the collocation points. Hence, the diagonal
portion of D; is nonzero.

In many cases x5 = -1, xy = 1 and the other Xj are zeros of some
polynomial  Qy-j(x).  Hence, dpep (XD = (2 - l)QN_l(x). One can then
rewrite the formula for djk in terms of Qu.;(x). For j, k # 0, N we
reproduce the formulas of Tal-Ezer [20]. He further points out that if

Qy-1(x) 1is a Jacobi polynomial associated with the weight function

(1 - x)°® (1 + x)B then

y 1 _~(a+1) _ (B-1)
L

= = — (2.13)
xk xl Z(Xk I) 2(xk + 71)

2#k
where the sum is over the roots of Qu-1(x). This can then be used to
simplify (2.12b). When the ends points x = -1 or x =1 are included in
the collocation points then these must be explicitly accounted for to find
djk'

For the standard Chebyshev collocation points, we have
xj = cos(mj/N) j = 0,...,N. (2.14)

Note that this orders the points in reverse order from our usual assumption.
In this case one can evaluate the derivative by using FFT"s. This requires
only NlogN operations rather than the N2 operations required by a matrix
multiply. Computationally it 1is found that for N < 100 that the matrix
multiply is faster than the FFT approach, see, e.g., [23]. The exact
crossover point depends on the computer and the efficiency of the software for

computing FFTs and matrix multiplies. The matrix multiply has the advantage



that it is more flexible and vectorizable. Thus, for example, both the
location and the number of the collocation points is arbitrary. In order to
use the FFT approach, it is required that the collocation points be related to
the Fourier collocation points, e.g., Chebyshev. Furthermore, the total
number of collocation points needs to be factorizable into powers of 2 and 3
for efficiency. The efficiency of these factors depends on the memory
allocation scheme of the computer. Other collocation nodes than (2.14) are
considered in [3, 7, 13]. The matrix D for the Chebyshev points (2.14) is
given in [7].

In Appendix A, we consider the problem when we have N collocation nodes
but wish the derivative matrix to be exact (in least squares sense) for M > N

functions which need not be polynomials.

3. PARTIAL DIFFERENTIAL EQUATION

We consider in this study three applications of collocation methods: (1)
approximation theory, (2) hyperbolic equations, and (3) elliptic equations.
For approximation theory we need only discuss accuracy. We first need some
way to measure the approximation error that can be used on a computer. We

cannot use the error at the collocation points since, by construction, this

error is zero. Instead, we use

-

2 _
bE - PI” =

I =~ 2

w [£(x,) - 1>N(xm)]2 (3.1)

2=0

for some sequence of points xj which are not the collocation points. In

general, we shall choose N” much larger than N, the number of collocation




points, If the original points are chosen as Chebyshev nodes, then we again
choose the Xy, as Chebyshev nodes based on this larger number, N°. Because
of this selection of nodes the sum in (3.1) approximates the Chebyshev

integral norm, i.e.,

) 1 [f(x) - PN(X)]2

e - Pl ~ f dx (3.2)
-1 2
1 - x
1 2 = 0,N
where w, = 1z and c, = .
¢ N Y2 .-=o0,

When the collocation points are evenly spaced then we shall choose the nodes

of the integration formula to be also uniformly spaced. 1In this case

1
IE - P I% ~ [ [f(x) - P (x)1%dx (3.3)
o= N
1,1
where vV, T Y

'

For general collocation points it is not clear how to choose the weights
LA in the norm. An alternative possibility is to measure the error in some
Sobolev norm, In this case, the finite sum can be based on the original
collocation points and the norm is the L2 norm of the derivative. In this
study all errors will be given by (3.2) regardless of the distribution of the
collocation nodes.

For hyperbolic problems we need to be concerned with stability in
addition to accuracy. We also study the influence of the boundary treatment
on both the accuracy and stability of the method. For simplicity we shall

only consider the model equation



_10_

u = a(x) u_ -1 <{x<1, t > 0. (3.4)

If a(x) 1is positive at both boundaries then we need to impose a boundary
condition at x =1, If a(-1) is negative while a(l) is positive, then we
impose boundary conditions at both ends. On the other hand if a(-1) is
positive while a(l) 1is negative then no boundary conditions need be given.
For spectral methods, it 1is important that this distinction be preserved at
the approximation level. Thus, whenever analytic boundary conditions are not
given the spectral technique will be used to advance the solution at the
boundary. The given boundary conditions are always chosen so that we know the
analytic solution.

We will solve the differential equation (3.4) by a pseudo-spectral
algorithm, Thus, we will consider the solution only at the collocation
points. We then replace the derivative in (3.4) by a matrix muitiply as
described in section 2. We next multiply a(x) at each collocation point by
the approximate derivative at that point. We now have a system of ordinary
differential equations in time. To advance the solution in time we could use
any ODE solver. In particular, we shall use a standard four stage fourth
order Runge-Kutta formula. This formula has several advantages. First, since
it is fourth order in time (for both linear and nonlinear problems), it is
closer to the high spatial accuracy of the spectral method than a second order
formula, Also, the region of stability includes a significant portion of the
negative real half plane and so is appropriate for Chebyshev methods which
have eigenvalues in the negative half plane. Finally, if we look along the
imaginary axis it has a comparatively large stability region. An alternative

method is to use a spectral method in time. However, it is difficult to
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generalize such methods to nonlinear problems while Runge-Kutta methods extend
trivially to nonlinear problems.

Since this is an explicit method (even though all the points are
connected every time step) it is easy to impose boundary conditions after any
stage of the algorithm. Whenever we wish we can let the pseudospectral method

advance the solution at the boundary also, Since the method 1is explicit,

there 1is a 1limit on the allowable At because of stability
considerations. Heuristically, omne can consider this stability limit as
arising from two different cousiderations. One is based on the minimum

spacing between mesh points, which usually occurs near the boundary. As noted
above, this is heuristic since the domain of influence of each point is the
entire interval. Alternatively, one can derive a stability limit by finding
the spectral radius of a(x) times the derivative matrix. This is also
heuristic since the derivative matrix is not a normal wmatrix. For a(x)
constant both methods indicate that At varies with 1/N2. The exact
constant varies with the particular Runge-Kutta method used. For a two stage
Runge-Kutta method, the stability 1limit is about three times the minimum
spacing. For further details, the reader is referred to [5, 7] and the result
section.

In Appendix B, we present the proof of the stability of Chebyshev

collocation at points (2.14) for = u_,

Ue X

For our model elliptic problem, we shall choose a Poisson equation

Au = f(x,y), -1 <{x,y<1 (3.5)
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with u(x,y) prescribed on all four sides. As before £(x,y) will be chosen
so that we know the analytic solution.

We solve a time independent equation since it is easier to distinguish
the resolving power of the scheme in different regions of the domain. For a
time dependent equation, it can be difficult to distinguish local accuracy
since inaccuracies propagate from one part of the domain to another. This is
especially true for systems of hyperbolic equations with characteristics
travelling in each direction. When the time independent equations is
elliptic, then the solution is smooth. 1In particular, u(x,y) has at least
two derivatives even if f(x,y) 1is only continuous. The smoother f(x,y) is
the smoother u(x,y) will be, assuming the boundary conditions are

sufficiently smooth.

4, RESULTS

In this section, we describe the computational results that illustrate
many of the properties of pseudospectral methods. We begin with the
approximaton of functions. Unless otherwise noted, the collocation points
will be the Chebyshev nodes, (2.14). As is well known, interpolation at these
points yields a maximum error which is not much worse (0(logN)) than the best
possible minimax approximation [13 - 18]. Nevertheless, we shall see that the
quality of the approximation can vary greatly for different functions. We
shall also see the effect of varying the collocation points.

In Figure la, we display the pointwise error in approximating the

function u(x) = sin(20x-m) where m varies between 0 and /2. Thus,

u(x) varies between a sine and a cosine function. The top graph in Figure 1
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is the error for an approximation to a sine wave., The phase changes in the
following graphs and the bottom graph is the error for a cosine function. In
this case we chose 28 Chebyshev collocation points. For m = 0, i.e., a sine
function, the amplitude of the error is larger. This occurs since sin(x) is
an odd function and hence the coefficient of Ty 1s zero and so in essence we
are only using 27 polynomials. This is verified in Figure 1b by using N =
29; for this case the error of the cosine function is larger. Nevertheless,
this result is interesting for time dependent problem where the solution
varies between a sine and cosine function, 1In addition, we also notice that
for m = 0 the largest errors occur in the middle of the domain while for
m=n/2 the larger errors are near the boundaries, Thus, for smooth
functions the maximum error can occur anywhere in the domain. There is no
need for the error to be smaller near the boundaries where the collocation
points are bunched together.

In Figure 2 we show the pointwise error in approximating the function
u(x) = |x - xol which has a discontinuous derivative at X = X . We define

0
a point as being half way between two nodes in the Chebyshev sense when

X = cos (n(j +1H)/N).

i+
The top of the graph displays the error when the discontinuous derivative is
located halfway between nodes while the center of the graph shows the error
when the discontinuity in the derivative occurs at a node. The other graphs

show progressively other locations of X Thus, we see that when the

j.
discontinuous derivative occurs half-way between nodes in the Chebyshev sense,

then the error has a sharp peak near the discontinuity but is close to zero
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elsewhere. When the discontinuity occurs near a node then the error is more
spread out and several peaks may occur but the maximum error is decreased.
Gottlieb has observed similar phenomena in other problems. For other values
of x the error goes smoothly between these extremes.

In Figure 3a, we examine the effect of the aliasing error in the
approximation of a function. Gottlieb and Orszag [5] show that one needs at
least n points per wave length when wusing a Galerkin Chebyshev
approximation. TIan Figure 3, we approximate sin(Mnx) with N Chebyshev
nodes in a pseudospectral approximation. We plot the L2 error, (3.2), as a
function of the number of points past the aliasing limit. As before the error
begins to decrease exponentially when there are m points per wave
length., We further see that in order to reach a fixed error the number of
collocation points, N, should vary (approximately) as the aliasing limit

M1/3. Computationally, it is hard to find the exact exponent, but it

plus
seems to be between 0.3 and 1/3. In Figure 3b, we see that for f(x) =
tanh(mx) there is no sudden aliasing limit. Rather there is a gradual
reduction in the error as N increases,

For a Fourier method, it can be shown that one only needs two points per
wave length rather than w points per wave length. It might be speculated
that this is due to the larger spacing of the Chebyshev method near the middle
of the domain. 1In fact, asymptotically, the largest spacing between Chebyshev
node is exactly w/2 times as large as for Fourier nodes. In Figure 4, we
consider the same case as in Figure 3, but where the collocation points are
evenly spaced. One sees that one again need about m points per wavelength

before exponential accuracy occurs even though the spacing is the same as for

the Fourier method. There is a theorem that interpolation based on uniformly
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spaced points converges for analytic functions. Nevertheless, we see in
Figure 4 that the approximation begins to diverge if N is sufficiently large
with respect to M, The calculations for these case were carried out on a
CRAY computer which has about 15 significant figures. Using double precision
(about 30 significant digits) one stabilizes the procedure until larger N
are reached at which point the approximation again diverges. Hence, even
though the function is analytic nevertheless roundoff errors eventually
contaminate the approximation. Hence, collocation based on uniformly spaced
node is risky even for analytic functions because of the great sensitivity of
these collocation methods to any noise level,

In Figure 5a, we study the resolving power of Chebyshev methods when
there are sharp gradients. 1t is often stated, that Chebyshev methods are
ideal for boundary layer flows since they naturally bunch points in the
boundary layer. In Figure 5a, we plot the L2 error when we are
approximating the function u(x) = tanh(M(x - xo)), for M = 8, 32, 128, 512,
and 2048 and N = 31. As M increases the gradient becomes steeper and in
the limit approaches a Heaviside function. Furthermore, tanh(x) is also a
solution to Burger”s equation and so appropriate to model boundary layers. We
see that, indeed, for moderate values of M the accuracy is greater when the
gradient occurs closer to the boundary. Thus, given a moderate slope a
Chebyshev collocation method "sees" the gradient better if it is near the edge
of the domain. Thus it may be advantageous to consider multidomain approaches
[9, 10]. However, when the slope becomes too large so that it is not resolved
by the collocation points, then the error is equally large everywhere. In
particular, a true discontinuity, e.g., a shock, is not resolved any better

near the boundary then it is in the middle of the domain.
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In the previous case it was implied that the Chebyshev method resolves
gradients better near the boundary because the nodes are closer toggther near
the edge. To check this hypothesis, we plot the same case in Figure 5b where
now the collocation is based on uniformly spaced points. We consider the same
case in Figure 5a but now choose M = 2, 4, 8, 16, 32. We choose lower values
of M then before since the approximation based on evenly spaced points does
not converge when the gradient is too large. TFor the same M the errors are
much larger for the uniformly spaced nodes than Chebyshev spaced nodes.
Nevertheless, the errors are much smaller when the gradients occur near the
boundary. Thus, gradients in the '"boundary layer" are better resolved than in
the center of the domain even though we are using interpolation based on
uniformly spaced points. In fact, the ratio of the L2 error when the

2 error when the gradient is near the edge

gradient is at the center to the L
is even larger for uniformly spaced nodes than for a Chebyshev distribution of
nodes. In both cases, we used the Chebyshev norm (3.2). However, the results
do not depend on the details of the norm,

In order to explain this phenomenon we examine the singularity of the
function in the complex plane. To simplify the discussion we shall consider
the easier case of an expansion of a function in Chebyshev polynomials. In
this case it is known [l4] that the approximation converges in the largest

ellipse with foci at +1 and -1 that does not contain any singularities.

The equation of an ellipse with foci at %1 1is

where £ > 2 measures the size of the ellipse. Let, r = 2 + V¥ £2 -4
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Then r is the sum of the semi-major and semi—-minor axes. It is known

[12, 16] that the convergence rate of the scheme is bounded by r—N. Hence,

as £ increases the approximation converges faster. L is determined by
the closest singularity. Suppose that this singularity occurs at X, ¥,
then

2

L =2(>—<2§2+1+/(§2+§2—1)2

+4§2 .

For f(x) = tanh(M(x - xo)) we have that X = X and §'= %ﬁ . Thus, as

Xy varies, ¥y is fixed while x changes. It is easily shown that

L
=2
X

L increases as |x| = |x0| increases. Hence, as x; approaches the

2 — —
(7)) > 0. Thus, for fixed Y, 2 2 is a minimum at x =0 and

boundaries, *l1, the rate of convergence increases. Also, as .M increases,
i.e., the function has a larger gradient, then §' decreases and L
decreases and so the rate of convergence decreases. For interpolation
approximations, both at Chebyshev and uniformly spaced points, a similar
phenomenon occurs but the quantitative analysis is more complex [12].

For uniformly spaced collocation points in [0,1], the ellipses are

replaced by the curves u(x,y) = constant where

u(x,y) =1 - xln/x2 + y2 - Q1 - x)ln/?l - x)2 + y2 + y arctan —————%}—————

2 Ll
X ~-X -y
By examining graphs of this curve [11, p. 249] one sees that having the first
singularity at x. + f; increases the size of the region as X moves

0 0

toward the boundaries. As before, this increases the rate of convergence.
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In Figure 6, we consider the same case as Figure 5a for the functiom

f(x) = tanh[Q(x - xo)]. Here, Q is a function of M and X, specifically

2
Q= %ﬂ J{ MZ L ’ M=2,4, 8, 15, 32.
1+ M - x.)
0
= Mm .
At the center, x5 = 0, Q = 5~ while near the edge
2 2
X, ~1 and Q :_E%fl . With this scaling the 12 error is essentially

independent of xj. This indicates that an adaptive collocation method could
be useful [2, 8].
In order to further investigate the resolving power of the schemes, we

repeat the experiment of Figure 5 but for a function that is not analytic. 1In

this case, our previous analysis is no longer valid. We choose

sgn(n) In| > 1
i(x) = (4.1)

%(3n5 - 1on3 + 157)  |n| <1

where n = M(x - xo). Hence, f(x) = =1 when x < X, —~ﬁ , f(x) = +1
when x> x. + L and is a quintic polynomial in between. Furthermore, f(x)

0 M

has two continuous derivatives, but the third derivative is dicontinuous at

x = X, + % . Thus, as before, x; denotes the center of the "jump" and the
it becomes larger as M increases. In Figure 7a, we plot the L2
error for Chebyshev collocation with 31 nodes. As x5 goes toward the
boundary, there is a small decrease in the error, but not as pronounced in

Figure 5a. Even more surprising is the fact that the decrease in error is

greater for M = 32 than for M = 2. Thus, in contrast to Figure 5a, there
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is no longer a sharp decrease for smoother functions as X approaches 1.
When using uniformly spaced points the absolupe error is larger than when
using Chebyshev points. However, now there is a large decrease in the error
as XO approaches the boundary. We compare the case M = 16; for Chebyshev
collocation the error decrease by about 2 orders of magnitude as Xy varies
from the center to the edge. For uniformly spaced points the error decreases
by about 6 orders of magnitude. This is despite the fact that the Chebyshev
collocation method bunches the points near the edge. We also note that
nothing special happens when xg is sufficiently close to the boundary that
the discontinuous third derivative at X4 +-§ is no longer in the domain.
In Figure 8a, we study a similar phenomena. In this case, we study the
L2 error as we vary the strength of the singularity. We consider the
function u(x) = H(x - xO) * (x - xO)M, where  H(x) is the Heaviside
function. Thus u(x) has a discontinuous M-th derivative. As expected,
based on previous cases, we see that when the high order derivatives are
discontinuous that the Chebyshev collocation method resolves the functions
best when the discontinuity is near the boundary. However, when low order
derivatives are discontinuous than the differential between the edge and the
center decreases. For a step function, M = 0, the error oscillates with equal
amplitude throughout the domain. As x approaches the boundary only the
frequency of the oscillation changes. In Figure 8b, we again see that the
same qualitative picture occurs when the collocation is based on uniformly
spaced points. We also see that global collocation based on uniformly spaced
points is not convergent when the function is not smooth. This divergence is
amplified if the discontinuity occurs near the center of the domain. 1In this

case, the divergence is no longer caused by roundoff error. Rather it already
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occurs at moderate values of N and begins at larger error levels. For f(x)
= |x| it can be proved [16] that collocation based on uniformly spaced nodes
converges only for the points x = 0, +1, -1.

In order to further study the resolving power of the global schemes near

the boundary, we consider the function

[ +1 x <1
f(x) = .
-1 X_Z 1

We plot the pointwise error in Figure 9a for both Chebyshev nodes and for
uniformly spaced notes. For uniformly spaced nodes, the error is very small
in the interior, (see Figure 9b for a logarithmically scaled plot) but is very
large near, i.e., within 0(%), x = 1. From Figure 9b we see that the
error is larger near x = -1 than in the center. For the Chebyshev nodes,
the error is more global, but the large error near the boundary is confined to
an interval of size 0(150.

N
We next consider the partial differential equation

u =u -1 <x<1l,t>0
t X - -
(4.2)
u(x,0) = £f(x) u(l,t) = g(t).
We first discretize (4.2) in space using
v =Dv (4.3)
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where D is the matrix derivative based on the collocation points Xg,...XN
and v 1is the vector of the dependent function evaluated at the collocation
nodes. We shall further assume that the point x = 1 is a collocation
point. As before D is explicitly given by (2.12). To advance (4.3) in time
we use a four—-stage fourth order Runge—-Kutta formula.

In studying (4.2) we shall be interested in both accuracy and stability
properties of the algorithm. For stability we need to distinguish between
space stability and time stability [6]. By space stability, we mean the
behavior of the approximation v as the number of modes N increases when
0<t<T. By time stability we mean the behavior of v as time increases,
for fixed N. Since, D can be diagonalized the scheme is time stable
whenever all the eigenvalues of AteD lie in the stability region of the
Runge-Kutta scheme. This does not necessarily prove space stability since the
norm of the matrix that diagonalizes D depends itself on N. Obviously, the
spectral radius of D and also the maximum allowable time step depends on the
implementation of the boundary conditions.

Since the temporal accuracy is lower than the spatial accuracy the
maximum At allowed by stability considerations will not yield very
accurate approximations. However, by decreasing the time step we can increase
the accuracy of the solution. This general technique works equally well for
nonlinear problems. When the model equation (4.1) is replaced by a more
realistic system with several wave speeds then the stability limit will also
give approximations that are accurate [l1]. Also, when one is only interested
in the steady state then frequently the time step can be chosen by stability
considerations alone. An alternative, which will not be persued in this

study, is to use spectral methods also in the time domain, e.g., [4, 21].
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In order to measure the accuracy of the approximation, we shall choose
u(x,t) = f(x - t) for some f(x). Hence, the approximation can be compared
pointwise with the analytic solutionm. The boundary data is then given by
g(t) = £(1 - t). We shall measure the error either pointwise or else in a
weighted L2 norm given by (3.2).

We first study the effect of the boundary treatment on the stability and
accuracy of (4.3). One property of global methods is that the approximation
is automatically updated at all collocation points including the boundaries.
Thus, if one wished, the scheme could be advanced without ever imposing the
given boundary data; but this would be an unstable scheme. For a multistage
time scheme, one can impose the boundary conditions at any stage one wishes.,
We now consider (4.1) with f(x) = sin(wx). In Figure 10a, we impose the
given boundary condition after each stage while in Figure 10b we impose the
boundary condition only after the fourth stage. We define the Couranf number,
CFL, by

CFL = N At.

In both plots, 10a and 10b, we display the error for several values of the
Courant number. We see that imposing boundary conditions after each stage
allows a larger maximum stable CFL number. For the four stage scheme, the
maximum CFL is about 35. However, for smaller time steps the error is
slightly larger than when one imposes the boundary condition only at the end
of all the stages. One also sees that for a given error level that the
approximate solution is essentially independent of the time step below some
critical time step. As one demands more accuracy the necessary CFL number

decreases. For a smooth solution, the necessary time step depends
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exponentially on N. The largest stable At do not give accurate solution
at any error level. We also found that the error grows in time if the
solution is not sufficiently resolved in either space or time. There was no
growth when N was large enough and At was sufficiently small.

In Figures lla and 1lb, we again plot the L2 error for approximating
(4.2) with £(x) = sin(x) as N increases and for a selection of CFL
numbers. In this plot, we choose a different sequence of collocation points

given by
x; = =(1 -a) cos EJ-+ a (-1 +-§i) 5 =0,...,N (4.4)

so xg = -1 and Xy = 1. These points are a linear combination of Chebyshev

nodes and uniformly spaced nodes. Letting

L _B-na- cost)

2 T :
¥ (1 - cosﬁ)
Then
IS G
— 4N 2
1 -
4N (4.5)
= O(%) when 8 = 0(1),
and we find that
B = new spacing at edge (4.6)

Chebyshev spacing at edge
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We solve (4.1) by using the derivative matrix (2.12). We do not use a mapping
to Chebyshev collocation nodes. 1In Figure 1la, we choose =2, 1i.,e., a
spacing at the edge twice as coarse as the usual Chebyshev spacing. We see
that in this case we cannot increase the allowable time step beyond the
stability condition for the Chebyshev nodes. Hence, the stability condition
is not directly related to the minimum spacing. In Figure 1lb, we display the
error for B =%Q , i.e., a spacing twice as small as the Chebyshev spacing
near the wall. Tuo this case the largest stable time step is reduced compared
with the Chebyshev nodes. In this example, we have considered constant
coefficients. For a problem with variable coefficients it is possible that
coarsening the mesh near the boundary will allow a larger time step. This is
because the coarser mesh near the boundary may just counteract the behavior of
the variable coefficients near the boundary.

In Figure 12, we consider uniformly spaced nodes, i.e., a = O. From
Figure 12, we see that even for small CFL levels that thé error first
decreases but then increases as N gets larger. These calculations were
carried out in double precision on the CRAY, Nevertheless, it is difficult to
distinguish between a mathematical instability and an instability caused by
rounding errors on the computer.

In Figure 13, we consider the differential equation

~
=~
L]
~J

o

u, = -xXu_, -1 <x <1
x — —

u(x,0) = £(x).

For this differential equation, we do not specify boundary conditions at

either end of the domain. The solution is given by u(x,t) = f(xe”%) and
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S0 u(x,t) decays to a constant value. It is easy to verify that the
eigenfunctions of the spatial operator are vj(x) = x with corresponding
eigenvalue Aj = -j, j =0,.0.,N (see also [5]). Hence, the stability
condition is At S;% where C depends on the details of the explicit time
integration scheme. Since u(x,t) 1is almost constant for large time the
errvor levels become very small, In figure 13, we plot the L, error at
time t = 10, with £(x) = sinmx. TFor the fourth order Runge-Kutta scheme

C~ 2.8 is the stability limit. 1In Figure 13a, we use double precision on
the cray (about 30 significant figures) while in Figure 13b we only use five

significant figures. We define the CFL number for this problem as
CFL = NAt.

Comparing 13a with 13b, we note that CFL = 2 is stable using double
precision but is unstable using only five significant digits. The effect of
roundoff on stability is studied in [24]. For this case the effects of
roundoff are 1important only for time steps very close to the stability
limit, The effect of roundoff is more pronounced when At ~ 1L/N than
when At ~ l/Nz.

We further see from this case that the maximum allowable time step is not
necessarily related to the minimum spacing in the grid. In this case, the
fact that no boundary conditions were specified allowed At to vary with
1/N  rather than the usual 1/N2. We also saw a similar phenomenon where
coarsening the mesh near the boundary did not allow a larger maximum time
step. A similar conclusion was found by Tal-Ezer [22] for the Legendre-Tau

method which has a time step limitation that depends on 1/N even though the
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minimum grid spacing is 1/N2. Thus, to find the stability limit, one must
analyze the derivative matrix appropriate for each case rather than using a
heuristic approach based on the spacing between collocation nodes.

We finally discuss the solution to the Poisson equation (3.5). The right
hand side and boundary conditions are chosen by deciding a priori on the exact
solution, We solve (3.5) by a Chebyshev collocation method in each
direction. The matrix equation that results is solved by a multigrid
technique [25].

In Figure 14 we consider the case where the exact solution is u(x,y) =
sinry tanh(M(x - xo)). Thus, the solution is smooth in y and has a
gradient in the x direction. The sharpness of the gradient and its location
are given by M and xg respectively. Hence, this models boundary layer
type behavior. As before (see Figure 5a) when M 1is not too small then the
approximation is more accurate when the gradient occurs near the Boundary.
For sharp gradients, i.e., M very large, the gradient is not resolved by the
mesh and the Chebyshev L2 error is approximately independent of the position
of the gradient. As shown by Figure 5b, this increased accuracy in the
boundary layer is not only due to the increased number of collocation points
in the "boundary layer". Rather it is due to properties of global
approximation techniques. It is of interest to note that for M = 1024, i.e.,
a discontinuity, that the error is almost constant, However, for M = 64 and
256, i.e., a sharp gradient, there are peaks in the error as X approaches a

collocation node.
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5. CONCLUSIONS

We consider the properties of global collqcation methods to problems in
approximation theory and also partial differential equatiouns. In particular,
we study concepts that have been used by many authors without verification.

In order to be able to study differential equations for a general
sequence of collocation nodes we calculate the approximate derivative by a
matrix times vector multiply. For Fourier or Chebyshev methods one could also
use a FFT [5]. For a small number of nodes, N ~ 64, the matrix multiply is
faster than the FFT, For sufficiently large N the FFT is always faster
since it grows as NlogN rather than N2. The exact cross-over point between
the two techniques is very machine dependent as well as software dependent.
There obviously are differences between scalar, vector, and parallel
computers. Nevertheless, for practical N wused in most partial differential
equation solvers the matrix multiply is not much slower than the FFT. Hence,
we only use the matrix multiply technique due to its greater generality and
flexibility.

It follows from the results presented in Section 4 that a global
collocation method must be distinguished from a local finite difference or
finite element approximation. In particular, the greater density of points,
for a Chebyshev collocation method, near the boundary does not give increased
accuracy, for a smooth function, near the boundary. The extra density near
the boundary is needed to counteract the tendency of polynomials to have large
errors near the edges of the domain.

Chebyshev collocation methods do have lower errors when sharp gradients
are near the boundary than when they are in the center of the domain. Similar

results occur when there is a discontinuity in some derivative. However,
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qualitatively similar results are obtained using uniformly spaced nodes.
Thus, the increased resolution near the boundary is due to the global nature
of the approximation and not the bunching of collocation nodes. Of course, in
terms of absolute error, it is preferable to use Chebyshev collocation rather
than uniform collocation. This indicates that domain decomposition methods
should be advantageous [9, 10] but not for shocks. In fact, even in cases
where collocation based on a uniform mesh should converge the actual
interpolation process on a computer eventually diverges due to roundoff
errors. These roundoff errors contaminate the results for relatively small
N.

As a further distinction between global and local techniques we consider
the aliasing limit. For a Fourier (periodic) method we need 2 points per wave
length to resolve a sine wave. For a Chebyshev method we need m points
per wavelength. The difference between 2 and m is not due to the
different distribution of points in these techniques. Polynomial collocation
based on uniformly spaced points again needs ™ points per wavelength,
Furthermore, for other functions, e.g., tanh x, one does not observe any sharp
aliasing limit. Thus, one can not speak of number of points per wave length
for general functions on nonperiodic domains.

An alternative to improving the accuracy of an approximation is to map
the x domain [-1,1] onto another computational domain s, for simplicity
again [-1,1]. The above conclusions do not extend to such mappings. First, a
polynomial in s 1is no longer a polynomial in x., Hence, in the physical
space x we are not considering polynomial collocation methods. In addition,

2 . . :
norm in s-—space corresponds to a weighted L2 norm in X—-space.

the L
Hence, it 1is difficult to measure the effectiveness of such mappings. In

practice [2] has shown that in some cases adaptive mesh mappings can be

effective for spectral methods.
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The results obtained for approximating solutions to elliptic partial
differential equations seem to correspond to thg results for the approximation
problem. Again one can not interpret the properties of a Chebyshev
collocation method in terms of finite difference properties. Such concepts as
number of points in a local region are not meaningful. If one chooses another
set of collocation points then there are two ways of implementing the
method. One can map one set of points to the other and then use a Chebyshev
method in the computational space. This introduces metrics into the
equation. Alternatively, one can solve the equation in physical space using
the general derivative matrix (2.12). We have mnot investigated the
differences between these two approaches.

For a time dependent partial differential equation, the study is more
complicated. First, there is an accumulation of errors as time progresses.
Thus, for example, for a stationary problem one can distinguish between the
discontinuity being at a node or in between nodes. For a time dependent
problem the discontinuity is moving and so all effects are combined. This is
especially true for systems with variable coefficients where there is coupling
between all the components.

Also, there is the question of stability in addition to accuracy. Thus,
we have found that the implementation of boundary conditions influences both
the maximum time step allowed and the accuracy. At times an implementation
which increases the stability will decrease the accuracy.

We also found that there is no direct correlation between the smallest
distance in the mesh and the maximum allowable time step. Coarsening the mesh
near the boundary does not allow a larger time step. This again demonstrates

the fallacy of describing a global method in terms of local behavior. As is
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well known, for wave equation type problems one should not choose the maximum
allowable time step allowed by stability. Since we use a fourth order
accurate method in time but a spectrally accurate method in space one should
choose a smaller time step to compensate, Thus to achieve time accuracy there
is no need to increase the 0(1/N2) time step restriction for hyperbolic
equations., For stiff problems or if one is not interested in time accuracy
then one may wish to exceed the stability restriction. Furthermore, for
parabolic equations At :_O(I/NA) which is much too restrictive. As
before, one can consider other sets of collocation points. Again using
mappings or the derivative matrix based on these nodes give rise to different

schemes,
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APPENDIX A

In Section 2, we saw that given the collocation points Xg,...,Xy and
N + 1 functions uj(x) then the derivative matrix, D, is determined by
demanding that D times (¢j(x0),...,¢j(xN))t give the exact derivative at
the collocation points. Let D = (djk) and define the matrix U by Ujk =
uj(xk) jo,k = 0,.0.,N. Given the matrices D and U we denote the j-th
column of these matrices as d; and u;e Then each column of D is

J J

determined by the equation

(A1)

at all collocation points x k =0,...,N.

K’
If we wish D to be exact for M > N+ 1 functions, then in general there is
no solution. Instead we can demand that D give the smallest L2 error over
these M functious. Intuitively if D 1is almost exact for many functions,
then it should be a good approximation to the derivative. Tun particular, one
may choose functions that are more appropriate to a given pfoblem than
polynomials. Choosing D to give the least sqares minimization is equivalent

to demanding that
(A2)

instead of (Al). It is easily to verify that
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T M
(u U)jk = izo ui(x:.| Ju, (%)
and
M
(Utuf)k = E u.(xk)uf(x.), i,k = 0,...,N. (A3)
J i=0 1! 1
We now define
M
v (x) = iZO u, (x v, (%), k = 0,.0.,N (A4)

then
vi(x.) = (ttuD), .
k%5 ik

Assuming det U # 0O then the vk(t) are linearly independent.‘ It also
follows that D 1is exact for the N + 1 functions vk(x) at the collocation
points. Hence, demanding least square minimization for wu;(x), i = 0,...,M
is equivalent to demanding exactness for v;(x), i = 0,...,N given in (A4).
We next extend this by letting M become infinite and replacing the sums
by integrals. Thus, given the continuum of function wu;(x) and demanding
that D be the best least squares approximation to the derivative at the

collocation points is equivalent to demanding that D be exact for the

N + 1 functions

m
vk(x) = f ui(xk)ui(x)di. (A5)
0
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To demonstrate this, we consider a specific example. Let wu,(x) be the

functions sin(kx) and cos{kx) for 0 <k < gl and choose N + 1
uniformly spaced collocation points, xj. Since k S.gl we are always below

the aliasing limit. It follows from (A5) that

vk(xj) = é [sin(ixj)sin(ixk) + cos(ixj)cos(ixk)]di

. Nr
sin -2——-(xj - xk)
S —— j*rk (A6)
j k
Nn .
2 =k

These functions, vj(x) are known as SINC functions and have been used for
interpolation formulae [19]. Demanding that D be exact for vj(x), j
Oy.¢.,N yields the derivative matrix
j+
(-3

T 3k
X, Xk

djk

which is an antisymmetric matrix. We also note that this matrix resembles the

derivative matrix for the Chebyshev nodes [7].
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APPENDIX B

In this section, we present the proof that Chebyshev collocation at the

standard Gauss-Lobatto points 1is stable for solving scalar hyperbolic

equations. This result was given in [7] without proof.

Consider the collocation points
X. = COS %l , j =0,...,N.

Let u be the solution to

il
o

u =u u(l,t)

u(x,0) = f(x).

If v is a N-th order polynomial which is found by collocation at
[5], [7]), then v exactly solves the modified equation

(1 + X)TﬁéN(T)

Ve = vy + N y v(l,t) =0

where

and

N
v(x,t) = (e)T, (x).
kZO A kX

We need the following fact:

(B1)

(B2)

x: (see

(B3)

(B4)
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Lemma:
d 27 _ _ 2 _
I [(ZaN - aN—l) ] = 4N(2aN aNaN-l)' (B5)
Proof:
da da
d 2, _ N N-1
o [Qay = ay 7] = 2Qay —ay PC g = ) (6)

comparing the coefficient of Ty_; in (B3) we find that

da da

N-1 N
3t = 2NaN + 2 T
or
2 Sy Dy
dt dt N°*

Inserting this into (B6) gives the lemma. With this lemma we prove the

following theorem. Let

then

: 4
Theorem: Let v solve (A2.3), then if §ﬁ:T-S 8 ng then
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L{Iﬁ_z-i—(1+x)(l—8x)v(x,t)+ (23,
J

2
dt ; g0 (B7)

aN_

and so the solution v is stable,

Proof: We multiply (B3) by (1 + x (1 - Bx )v(x ,t) and sum over

NC

the collocation nodes. We then have

" 1 2wl '
— —_— - = =~ V) —— + -
N 3 Z c (1 + xj)(l ij)vj 5 Z - [Qa xj)(l ij)]vvX
J J ]
, (88)
N 1
+ E—-ﬁ-z - (1 + x ) (1 - Bx )T (x )v(x ).
J ]
However, the last term is zero since T&(Xj) = 0 at interior points,
1+ Xy = 0 at X5 = -1 and v(xj) =0 at Xy = +]. Furthermore, if
£(x) =] b, T, (x) £€P,\ 5
then
m 1 f(x)
ﬁ'E = f(xj) dx + nb2
J 1 - x2
|
By algebra, it can be verified that the 2N-th Chebyshev coefficient of
(1 - B)Nay IN-1
\ (1 + x) (1 - Bx)vvx is b,y = 5 - B( 7 Ya ayay where as before

a are the Chebyshev coefficients of v. Therefore, (B8) can be rewritten as

3
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1 (1 + x)(1 -~ Bx)vv
m d 1 _ X
5—-(1—§-c—(1+xj)(1--ij)vj-{1 - dx
1l - x (89)
Ll 2N-1
+ [ - B)Na - B(—)ayay_,1.
Integrating by parts and using the fact that v(1l,t) = 0 we find that
d -R -
e G x)A - x v () = 2[ (1-8 3"*3")"(’”)“
i -1 1-x)v/1- x
(B10)
m 2 2N-1
+i [(1 B)NaN B(——Z——)aNaN-l]'
Using the lemma this is equivalent to
(i 1 2
a—-{i— 2-2— (1 + x DI Bx )v (x ,t) + N (2a - N—l) }
]
(B11)

fll-B-BX"'BXz

1 (1 -xy 1~ x2

N| —

v2(x,t)dx -2 [(3 - DN - B]ag.

If B 5_%—, then the integral term is negative while if B 2-3%:T ~-%, then

the second term on the right hand side is also negative. Hence, when
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sg:T-S_B 53% then the tight hand side of (Bll) is negative and the theorem

is proven.

If we choose the special case B =

I
&

then (Bll) becomes

(¢}

d m 1 4 2 m 2
at {2N § (1 + xj)(l - g-xj)v (xj,t) t BN (2aN - aN—l) }

(B12)
1 ! (1 - 2x)2 2 i 2
= — Tﬁ.f vi(x,t)dx - T6(7N - 4)aN-
-1 (L -x)y 1 - x2
As a corollary, this theorem implies that all the eigenvalues of D 1lie in

the left half of the complex plane.



-39-

REFERENCES

A, Bayliss, K. E. Jordan, B. .J. LeMesurier, E. Turkel, "A fourth order
accurate finite difference scheme for the computation of elastic waves,"

to appear in Bull. Seismological Soc. America.

A. Bayliss and B. J. Matkowsky, 'Fronts, relaxation oscillations and

period doubling in solid fuel combustion,'" submitted to .J. Comput. Phys.

C. Canuto and A, Quarteroni, "Approximation results for orthogonal

polynomials in Sobolev spaces," Math. Comput., 1982, Vol. 38, pp. 67-86.

M. Deville, P. Haldenwang, G. Labrosse, 'Comparison of time integration
(finite difference and spectral) for the nonlinear Burger”s equation,"
Proc. 4th GAMM-Conference Numerical Methods in Fluid Dynamics, Friedr.

Viewey, 1982,

D. Gottlieb and S. Z. Orszag, Numerical Analysis of Spectral Methods:

Theory and Applications, SIAM, Philadelphia, 1977.

D. Gottlieb, S. Z. Orszag, and E. Turkel, "Stability of pseudospectral
and finite difference methods for variable coefficient problems," Math.

Comput., 1981, Vol. 37, pp. 293-305.

D. Gottlieb and E. Turkel, "Spectral methods for time dependent partial
differential equations," Lecture Notes in Mathematics, 1985, Vol. 1127,

pp. 115-155, Springer-Verlag.



10.

11.

12.

13.

14,

15.

-40-

H. Guillard, R. Peyret, "On the use of spectral methods for the numerical
solution of stiff problems," University of Nice, Dept. of Math., Report

108, 1986.

D. Kopriva, "A spectral multidomain method for the solution of hyperbolic

systems," submitted to Appl. Numer. Math.

K. Z. Korczak, A. T. Patera, "An isoparametric spectral element method
for solution of the Navier-Stokes equations in complex geometry," J.

Comput. Phys., 1986, Vol. 62, pp. 361-382.

P. P. Korovkin, "Linear operators and approximation theory," trans. from

Russian, Hindustan Publ. Corp., Delhi, 1960.

V. I. Krylov, Approximate Calculation of Integrals, trans. by A. H,

Stroud, McMillan Co., New York, 1962.

J. H. McCabe and G. M. Phillips, "On a certain class of Lebesque

constants," BIT, 1973, Vol., 13, pp. 434-442,

A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. III,

trans. by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey,

1967,

G. Meinardus, Approximation of Functions: Theory and Numerical Methods,

Springer, Berlin, 1967.




16.

17,

18.

19.

20,

21.

22,

23.

-41-

I. P. Natanson, Constructive Function Theory, Vol., III, Fredrick Ungar

Publishing Company, New York, 1965,

M. J. D. Powell, Approximation Theory and Methods, Cambridge University

Press, Cambridge, 1975.

T. J. Rivlin, An Introduction to the Approximation of Functions,

Blaisdell Publishing Company, Waltham, Massachusetts, 1979.

F. Stenger, '"Numerical methods based on Whittaker Cardinal, or sine

functions," SIAM Review, 1981, Vol, 23, pp. 165-224,.

E. Tadmor, '"The exponential accuracy of Fourier and Chebyshev

differencing methods," SIAM J, Numer, Analy., 1986, Vol. 23, pp. 1-10.

H. Tal-Ezer, '"Spectral methods in time for hyperbolic problems," SIAM J.

Numer., Analys., 1986, Vol. 23, pp. 11-26.

H. Tal-Ezer, "A pseudospectral Legendre method for hyperbolic equations

with an improved stability condition," to appear J. Comput. Phys,

T. D. Taylor, R. S. Hirsh, M, M, Nadworny, "Comparison of FFT, direct
inversion, and conjugate gradient methods for use in pseudo-spectral

methods," Computers and Fluids, 1984, Vol. 12, pp. 1-9.



24,

25.

26.

-4~

L. N. Trefethen and M. R. Trummer, "An instability phenomenon in spectral

methods," to appear in J. SIAM Numer. Analy.

T. A. Zang, Y. S. Wong, M. Y. Hussaini, "Spectral multigrid methods for

elliptic equations, II," J. Comput. Phys., 1984, Vol. 54, pp. 489-507.

A. Zygmund, Trigonmetric Series, Cambridge University Press, Cambridge,

1968, Vol. 1.




Figure la.

Pseudospectral Chebyshev approximation to

m
0 <MK 7

POINTNISE ERROR
1 ’ o
> L
o o
o (=]
o

.
.

—43~

lolo

o
D
o
o
or

with 28 nodes.

sin(20x ~ M),

*Q



~4b~

POINTHNISE ERROR

*Q

Figure lb. Pseudospectral Chebyshev approximation to

sin(20x -~ M), 0 <M<12'-,

with N = 29.



Figure 2.

45—

POINTRISE EPROR IN U

The error for pseudospectral approximation to ix - xoi, 0.05

< x5 < 0.05 with 29 nodes.

function of x.

The error is plotted as a
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Same case as Figure 5a but using uniformly spaced collocation

points. Now M = 2, 4, 8, 16, and 32.

same Chebyshev norm as in Figure 5a.

The L2

error is the
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Figure 10a. Pseudospectral approximation to (4.1) with f(x) = sinnx.

A four-stage fourth-order Runge-Kutta formula is used and
boundary conditions are imposed after every stage. Each
graph represents a different time step,_i.e., CFL number with
an increase of V2  between graphs., The 12 error at t =

1 1is given as a function of N.




-59-

10wwx 1 E
10nx Ogg
10we -1 E

L2 ERRDR IN U AT T=1

10nw -2
10nw -3
10ne -4
10%w -8
10wn -6
10na -7
10%w -8
10w -9 5 L1 |
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f(x) = sinmx. A four-stage fourth-order Runge-Kutta
formula is used but with the boundary condition imposed only

once after the completion of the four Runge—-Kutta stages.
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Figure 14, Pseudospectral Chebyshev approximation to the solution of a

Poisson equation. The exact solution is

tanh(m(x - xo)) with

M =

4,

17 modes in each direction.

error as a function of
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We plot the

u(x,y) = sinmy
1024 and N =
L2 Chebyshev



Standard Bibliographic Page

1. Report No. NASA CR-178179 2. Government Accession No. 3. Recipient’s Catalog No. N
ICASE Report No. 86-60

4. Title and Subtitle 5. Report Date
GLOBAL COLLOCATION METHODS FOR APPROXIMATION September 1986
AND THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 6. Performing Organization Code

7. Author(s) |

8. Performing Organization Report No.

86-60

A. Solomonoff and E., Turkel

. Performing Organization Name and Address

10. Work Unit No.
Institute for Computer Applications in Science

and Engineering 11. Contract or Grant No.
Mail Stop 132C, NASA Langley Research Center NAS1-17070, NAS1-18107
Hampton, VA 23665-5225

. Sponsoring Agency Name and Address

13. Type of Report and Period Covered

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

£N&8..00Q0-9
"Avd

1 -1
FTIUT LT UL

15. Supplementary Notes *
Langley Technical Monitor: Submitted to Journal of
J. C. South Computational Physics
Final Report

16. Abstract

We apply polynomial interpolation mwmethods both to the approximation of

functions and to the numerical solutions of hyperbolic and elliptic partial
differential equatioas. We construct the derivative matrix for a general
sequence of the collocation points. The approximate derivative is then found by
a matrix times vector multiply. We explore the effects of several factors on the
performance of these methods including the effect of diffferent collocation
points., We also study the resolution of the schemes for both smooth functions
and functions with steep gradients or discontinuities in some derivative. We
investigate the accuracy when the gradients occur both near the center of the
region and in the vicinity of the boundary. The importance of the aliasing limit
on the resolution of the approximation is investigated in detail. We also
examine the effect of boundary treatment on the stability and accuracy of the
scheme,

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement
spectral methods, approximation 64 —~ Numerical Analysis
theory

Unclassified — unlimited

19. Security Classif.(of this report) 20. Security Classif.(of this page) |21. No. of Pages|22. Price

Unclassified Unclassified 67 AO4

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1986




